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INTRODUCTION

This report is the sixth in a series of regional hydrogeologic 
assessments (RHAs) completed as a joint effort by the Division of 
Waters from the Minnesota Department of Natural Resource (DNR 
Waters) and the Minnesota Geological Survey (MGS). This report 
describes the geology and hydrogeology of all or parts of six counties 
in western Minnesota to create a regional inventory of aquifers and 
aquifer conditions. While similar in geographic scope to previous 
RHAs, this report contains a more extensive treatment of the regional 
buried aquifer characteristics such as thickness and depth (Plate 4); 
hydrogeology as illustrated by cross sections (Plate 5); and ground- 
water flow directions, hydrochemistry, and pollution sensitivity (Plate 
6). These features make it similar to, but less detailed than, the compan-
ion county geologic atlas series. The southeastern part of the study area 
was described in the Pope County Geologic Atlas, Part A (2003) and 
Part B (2006). This RHA is designed for units of government and 
citizens to use in planning for land use, water supply, and pollution 
prevention.

GEOLOGIC DATA SOURCES

Much of the information used to produce the maps, cross sections, 
and figures of this report came from well records: the County Well 
Index (CWI) database of well logs maintained by MGS and the Minne-
sota Department of Health (MDH), as well as well logs from holes that 
were drilled for several previous hydrogeologic investigations of this 
region by the U.S. Geological Survey (USGS) (Van Voast, 1971a; Van 
Voast, 1971b; Wolf, 1976; Soukup and others, 1984; Delin, 1986; 
Delin, 1987; Delin, 1990). Another information source was electrical 
resistivity data collected by DNR Waters’ staff for this project. 

The CWI data include descriptions from drillers that are made as a 
well is drilled. Most of these well locations are verified in the field by 
staff from the MGS or MDH. The dataset also contains well logs with 
unverified locations. Some of the unverified data were used on the 
maps and cross sections of this report; however, some of the unverified 
data were ignored if the information seemed inconsistent with other 
more reliable information or if the locations were obviously incorrect.

CHARACTERISTICS OF SAND AND 
GRAVEL AQUIFERS

Depositional Characteristics

Figure 1 shows the thickness and distribution of surficial sand and 
gravel deposits in the study area. Some surficial sand boundaries 
shown in Part A were revised based on CWI information and soil 
surveys (Lewis and others, 1971; DeMartelaere, 1975; Diers, 1995). 
Buried sand and gravel deposits that underlie the surficial deposits are 
shown for reference in faded gray patterns. These deposits are 
presented and discussed in more detail on Plates 4 and 5. The geologic 
history of surficial sand deposition is derived from descriptions from 
Plate 1, Part A. Several advances and recessions of ice lobes, which 
moved into Minnesota from the northwest through the area that is now 
occupied by the Red River Valley, dominated the late glacial history of 
the region. Ice margins shown on Plate 1, Part A, represent the approxi-
mate positions that the ice lobe edges occupied long enough for huge 
volumes of meltwater and associated sand and gravel to be discharged 
from the melting ice.

The largest and thickest deposit from glacial meltwater is the 
Belgrade-Glenwood sand plain in the eastern portion of the study area. 
The thickest portions of this sand plain, where thicknesses from 50 feet 
to 70 feet are common, occur in the Alexandria area of central Douglas 
County, the Glenwood area of northeastern Pope County, and the Lake 
Johanna area of southeastern Pope County. Crop irrigation is a common 
use for the relatively thick portions of the Belgrade-Glenwood area 
aquifer in Pope County (Figure 1).

The two major rivers of the central portion of the study area, the 
Chippewa and the Pomme de Terre, are associated with thick, linear 
glacial outwash deposits from two separate ice margin locations. This 
sand and gravel was deposited along the eastern edge of a major ice 
lobe that existed to the west. The surficial sand and gravel beneath the 
Chippewa River broadens in the southern portion of the study area, 
west of Lake Emily in southwestern Pope and southeastern Stevens 
counties. This broader portion of the Chippewa River area aquifer 
represents deposits from a delta associated with Glacial Lake Benson 
that existed to the south in Swift and Chippewa counties (Patterson and 
others, 1999). Thickness values of 20–40 feet are common in this 
deposit; the thickest portion (40–60 feet) occurs generally west of Lake 
Emily. The glacial outwash beneath the Pomme de Terre River appears 
to have a relatively uniform width and maximum thickness range of 
50–70 feet in the study area. Crop irrigation, especially in the broad 

southern portion of the Chippewa River area aquifer, is common in 
these thick areas of surficial aquifer.

West of the Pomme de Terre River in Traverse, northern Big 
Stone, and western Grant and Stevens counties, occurrences of surficial 
sand are limited and thin. The dendritic pattern of surficial sand shown 
on the western portion of Figure 1 occurs in small creek valleys; was 
deposited during the postglacial period (Holocene); and consists of 
silty, clayey sand. The largest river in this portion of the study area is 
the Mustinka, which crosses Grant and Traverse counties. USGS bore-
hole data (Soukup and others, 1984) indicate maximum sand and 
gravel thicknesses of 40–60 feet in the Grant County portion of the 
Mustinka River valley. The other thick surficial sand occurs in the 
Beardsley area of northern Big Stone County with maximum thick-
nesses of approximately 40–50 feet (Soukup, 1980). Thicknesses of the 
other Holocene alluvial deposits in the western portion of the study 
area are unknown but probably much less than those of the Mustinka 
alluvium or the Beardsley area surficial sand. Pleistocene (ice age) 
glacial lake beach ridges occur as a curved pattern of surficial sand in 
Grant, northwest Stevens, and Traverse counties. These beach ridges 
are roughly perpendicular to the creek and river alluvial deposits. 
Thicknesses commonly range from 10 feet to 15 feet. 

Ground-water flow directions are shown on Figure 1 as black 
arrows for the major surficial aquifers in Pope County and small 
portions of adjoining areas. Very little water-level information pertain-
ing to the water-table aquifer was available from other portions of the 
study area. The ground-water flow directions of the Chippewa River 
area aquifer of southwestern Pope County and southeastern Stevens 
County have a relatively simple pattern of southerly flow and flow 
toward the river. By comparison, ground-water flow in the Belgrade- 
Glenwood area aquifer is very complex because it occupies portions of 
three major surface watersheds. These two major aquifers in Pope 
County are described with greater detail in the Pope County Geologic 
Atlas, Part B (Berg, 2006a). 

Ground-Water Residence Time

The ground-water residence times of samples from selected wells 
across the study area are shown in Figure 1. The interpretation of the 
ground-water residence time data is explained in more detail on subse-
quent plates. Geochemical data collected by DNR Waters for this 
project were supplemented by additional data from MDH collected 
during two previous investigations of water-quality issues of western 
Minnesota (Walsh, 2000; Minnesota Department of Health, 2001). 

The pink, green, and blue symbols on Figure 1 and detailed, 
enlarged versions (Figures 2a and 3a) and associated cross sections 
(Figures 2b and 3b) represent tritium values that indicate ground-water 
residence time. This is the approximate time that has elapsed from 
when the water infiltrated the land surface to when it was pumped from 
the aquifer for this investigation. Ground-water residence time is 
closely related to the pollution sensitivity concept described on Plate 6. 
In general, short residence time suggests high pollution sensitivity, 
whereas long residence time suggests low sensitivity. 

Tritium (3H) is a naturally occurring isotope of hydrogen. Concen-
trations of this isotope in the atmosphere were greatly increased from 
1953 through 1963 by aboveground detonation of hydrogen bombs 
(Alexander and Alexander, 1989). This isotope decays at a known rate, 
with a half-life of 12.43 years. Ground-water samples with concentra-
tions of tritium equal to or greater than 10 tritium units (TU) are consid-
ered recent water (mostly recharged in the past 50 years, shown in 
pink). Concentrations equal to or less than 1 TU are considered vintage 
water (recharged prior to 1953, shown in blue). Concentrations 
between these two limits are considered a mixture of recent and vintage 
and are referred to as mixed water (shown in green).

Aquifer symbols with a yellow dot indicate elevated values of 
chloride (chloride to bromide ratio greater than 175) originating from 
human activities (anthropogenic). Chloride concentrations and ratios of 
chloride to bromide (Cl/Br) from water samples have been used in 
previous ground-water studies (Berg, 2004 and 2006b) as an indicator 
of chloride contamination from human activities. Samples containing 
high Cl/Br ratios (above 175) were found throughout the study area 
from all the mapped aquifers. Some of the occurrences of elevated 
Cl/Br ratios in samples from deep wells, especially in the western 
portion of the study area, may be due to leaky well construction.

Ground-water age for the vintage samples also can be estimated 
with the carbon-14 (14C) isotope. This isotope, which also occurs natu-
rally, has a much longer half-life than tritium (5730 years). Carbon-14 
is used to estimate ground-water residence in a time span from about 
100 years to 40,000 years (Alexander and Alexander, 1989). The 
residence time of the 17 ground-water samples tested for carbon-14 
ranged from approximately 100 years to 6000 years. Some of the oldest 
residence times were found in water samples from buried aquifers, 
including aquifer 1 in southeastern Pope County northwest of Brooten 

(3000 years), the western aquifer south of Clinton in Traverse County 
(3000 years), and the OT aquifer southeast of Wheaton in Big Stone 
County (6000 years).

Most recent or mixed tritium values (pink and green symbols) and 
those well symbols indicating anthropogenic chloride (yellow dots) 
were directly or indirectly resulted from infiltration of precipitation to 
buried aquifers through the thick surficial sand areas outlined in the 
previous section. Many of these occurred in water samples from aqui-
fer 1 and the CW aquifer that underlie the Belgrade-Glenwood area 
aquifer in the eastern portion of the study area.

In areas where vintage tritium values dominated, such as much of 
northwestern Pope County and western Douglas County, recharge to 
buried aquifers through thick overlying layers of fine-grained glacial 
till is very slow. Carbon-14 values in the hundreds of years and thou-
sands of years within aquifer 1 and the CW aquifer also support this 
conclusion. Fewer water samples were collected for analysis from 
buried OT and older, unmapped Pleistocene aquifers of Traverse and 
Big Stone counties because of the sparse well density. However, for the 
six water samples that were collected, vintage tritium values and 
carbon-14 ages of more than 1000 years predominate in this western 
portion of the study area and indicate very slow recharge and hydrauli-
cally isolated aquifers.

Where the overlying fine-grained till layer is thin, typically less 
than 40 feet, evidence of relatively recent recharge was indicated by the 
high Cl/Br ratios in water samples from the LG aquifer in eastern Grant 
County and the recent tritium values in water samples from the OT 
aquifer in western Pope County. Additional recharge conditions are 
shown and discussed on the following plates.

Alexandria Detail Area

The city of Alexandria sits on the crest of the Alexandria moraine, 
which is the largest geomorphic feature of western Minnesota and 
extends south to the Spicer-New London area and north to the Upper 
and Lower Red Lakes. A major surface-water divide passes through 
this area splitting surface-water flow between the Minnesota River to 
the west and the Mississippi River to the east. Regional ground-water 
flow of the shallow buried aquifers mapped in this report is similarly 
split. Superimposed on this regional flow pattern is a complex local 
ground-water system in which ground water passes through the surfi-
cial sand aquifer or shallow buried occurrences of the OT or CW aqui-
fers into aquifer 1. Some ground water within aquifer 1 appears to 
discharge into the cluster of lakes in the area that ultimately flows into 
Lake Carlos and the Long Prairie River. 

Figures 2a and 2b feature ground-water flow into, through, and out 
of aquifer 1 in the northeastern part of the study area. The two major 
recharge zones include an area in the south-central portion of Figure 2a 
within the surficial sand area surrounded by Andrew, Union, Burgan, 
Mud, and Latoka lakes. The thick surficial sand and connected buried 
aquifers allow recharge to aquifer 1 in this area. The other major 
recharge zone is in the western portion of Figure 2, south of the city of 
Garfield and north of Lobster Lake and Lake Mina and shown on the 
left portion of Figure 2b (cross-section B-B’ on Plate 5). Surface water 
can infiltrate the thin cover of glacial till that covers the OT aquifer in 
the area, pass through the CW aquifer into aquifer 1, and ultimately 
discharge to the lakes. Nitrate concentrations in ground water above 
approximately 3 parts per million (ppm) are usually caused by anthro-
pogenic sources such as fertilizer application and septic or sewage 
systems. Four water samples collected within this detail area had 
nitrate concentrations higher than this background value. Two were 
located in the Lake Mina area, one on the east shore of Lake Mary, and 
one located east of Lake Carlos. All the ground-water samples but one 
in the study area were collected from buried or confined aquifers where 
reducing conditions (absence of dissolved oxygen) predominate. 
Dissolved nitrate is naturally removed by bacteria under these condi-
tions, which may account for the general lack of elevated nitrate values 
from these sampled wells.

Ground-water flow pathways in the eastern and western portions 
of Figure 2a and Figure 2b represent regional ground-water flow direc-
tions not influenced by the Alexandria area lakes.  

Pomme de Terre-Chippewa River Detail Area

The detail area shown on Figure 3a (central part of the study area) 
is west of the Alexandria moraine, and the regional ground-water flow 
of the shallow buried aquifers is to the west. The thick glacial outwash 
beneath the Pomme de Terre and Chippewa river valleys commonly 
intersects the OT aquifer that is somewhat laterally continuous and, at 
fewer locations, the deeper CW aquifer. These intersecting aquifer 
conditions appear to allow recharge to the OT aquifer and less com-
monly to the CW aquifer from the Chippewa River and associated aqui-
fer. Ground water within the OT and CW aquifers migrates to the 

southwest discharging to the Pomme de Terre River and associated 
aquifer.

Geochemical evidence is limited in this area, but there were three 
OT ground-water samples with elevated Cl/Br ratios and one sample 
from the CW aquifer with a recent tritium value in the Hoffman area 
(northeast portion of Figure 3a), as well as a CW ground-water sample 
at the northern end of Swan Lake with an elevated Cl/Br ratio (Figure 
1). These samples suggest a movement of ground water to the west 
from the Chippewa River aquifer.
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FIGURE 4. Pollution sensitivity of surficial aquifers. The surficial aquifers 
described on this plate are relatively sensitive to pollution. The sensitivity rating 
of these aquifers is based mainly on the relative content of fine- and coarse- 
grained sediments in the aquifers. The sediment descriptions of the map units in 
Part A, Plate 1, were evaluated according to the described sediment texture. The 
coarsest sediments that consist mainly of sand and gravel were rated as very high 
sensitivity. These map unit codes include bd, bsl, hc, hsl, lgo, lgc, ogs, ogo, ogc, 

and qc. The map units containing sand, silt, and clay were rated as high and 
include bns, ha, ho, hns, lgd, olw, and ugd. In selected areas, map units that gener-
ally consist of a thin cover (less than a few feet) of fine-grained material such as 
clay, silt, and organic material or till but are underlain by sand or sand and gravel 
were also included in the high sensitivity category. These map units include hp, hs, 
lgp, and op. Finally, based on well logs and other mapping considerations, 
portions of some other units were included in the high sensitivity category.

FIGURES 2a and 2b. Detail of stratigraphy and hydraulic connec-
tions near Alexandria. These figures show examples of the complex 
stratigraphy and hydraulic connections that exist in the Alexandria 
area between the surficial aquifer, lakes, and buried sand and gravel 
aquifers. The three mapped, buried aquifers are shown as gray 
patterns; the darker pattern represents the main water-supply aquifer 
in the area (aquifer 1). Arrows on Figure 2a indicate ground-water 
flow in aquifer 1. Potentiometric contours are shown on Figure 7, 

Plate 6. The main recharge areas for aquifer 1 are west and south of 
Alexandria where precipitation infiltrates through thick surficial 
sands (south area) or thinly covered and interconnected overlying 
layers of sand and gravel (west area). Arrows on Figure 2b indicate 
ground-water flow within and between aquifers. Recent and mixed 
tritium values in the buried aquifers are evidence that the complex of 
aquifers and lakes is a relatively dynamic and open system. Ground-
water discharge to the lakes appears to be a common occurrence. 

FIGURES 3a and 3b. Detail area showing connections of rivers to aquifers. 
Because it originated as glacial outwash channels, the sand and gravel associated 
with the Pomme de Terre and Chippewa rivers is relatively deep and hydraulically 
connected to buried aquifers in the area. In Figure 3a, the OT aquifer (darker gray 
pattern) provides a hydraulic connection allowing ground water in the Chippewa 
River surficial aquifer to flow west to the Pomme de Terre River surficial aquifer. 
Arrows on Figure 3a indicate ground-water flow directions in the OT aquifer. 
Potentiometric contours are shown on Figure 5, Plate 6. Arrows on Figure 3b 
indicate ground-water flow within and between aquifers.  

FIGURE 1. Surficial sand and gravel aquifers in study area. The map shows 
the thickness and distribution of the surficial sand and gravel deposits. With 
some exceptions, the boundaries of these deposits are the same as the map 
units on Plate 1, Part A. The saturated thickness of these surficial aquifers is 

indicated on the cross sections on Plate 5. The gray patterns indicate the extent 
of buried aquifers described on Plate 4. The box on the upper right of the map 
identifies the  detail area for Figure 2a. The box in the upper middle identifies 
the detail area for Figure 3a.   Well and aquifer symbols
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